- Factorization and Evolution
- Resummation: an Example
- Summary

- Challenge: use AF in observables (cross sections (σ) (also some amplitudes . . .)) that are $not \ infrared \ safe$
- Possible *if*: σ has a short-distance subprocess. Separate IR Safe from IR: this is factorization
- IR Safe part (short-distance) is calculable in pQCD
- Infrared part example: parton distribution measureable and universal
- Infrared safety insensitive to soft gluon emission collinear rearrangements

- Just like Parton Model except in Parton Model the infrared safe part is $\sigma_{\rm Born} \Rightarrow f(x)$ normalized uniquely
- In pQCD must define parton distributions more carefully: the factorization scheme
- Basic observation: virtual states not truly frozen. Some states fluctuate on scale 1/Q . . .

Short-lived states $\Rightarrow \ln(Q)$

Long-lived states ⇒ **Collinear Singularity (IR)**

RESULT: FACTORIZED DIS

$$F_2^{\gamma q}(x, Q^2) = \int_x^1 d\xi \, C_2^{\gamma q} \left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{\mu_F}{\mu}, \alpha_s(\mu) \right) \times \phi_{q/q}(\xi, \mu_F, \alpha_s(\mu))$$

$$\equiv C_2^{\gamma q} \left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{\mu_F}{\mu}, \alpha_s(\mu) \right) \otimes \phi_{q/q}(\xi, \mu_F, \alpha_s(\mu))$$

- ullet $\phi_{q/q}$ has $\ln(\mu_F/\Lambda_{
 m QCD})$. . .
- C has $\ln(Q/\mu)$, $\ln(\mu_F/\mu)$
- Often pick $\mu = \mu_F$ and often pick $\mu_F = Q$. So often see:

$$F_2^{\gamma q}(x, Q^2) = C_2^{\gamma q} \left(\frac{x}{\xi}, \alpha_s(Q)\right) \otimes \phi_{q/q}(\xi, Q^2)$$

• But we still need to specify what we really mean by factorization: scheme as well as scale

• For this, compute $F_2^{\gamma q}(x,Q)$

• Keep $\mu = \mu_F$ for simplicity

Factorization in terms of matrix elements:

$$\begin{split} W_{\mu\nu}^{(\gamma h)} &= \frac{1}{8\pi} \sum_{\sigma,X} \langle X|J_{\mu}(0)|h(p,\sigma)\rangle^* \langle X|J_{\nu}(0)|h(p,\sigma)\rangle \ (2\pi)^4 \, \delta^4(p_X - p - q) \\ &= \frac{1}{8\pi} \int d^4z \, e^{iq\cdot z} \, \langle h(p,\sigma) \, | \, J^{\mu}(z)J^{\nu}(0) \, | \, h(p,\sigma)\rangle \\ &= \sum_{a=q,\bar{q},G} \int_0^1 d\xi \, \, C_{\mu\nu}^{\gamma q} \left(\frac{x}{\xi},\frac{Q}{\mu},\alpha_s(\mu)\right) \phi_{a/h}(\xi,\mu) \\ &\phi_{q/h}(\xi,\mu) = \frac{1}{2} \sum_{\sigma} \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x p \cdot n} \, \langle h(p,\sigma) \, | \, \bar{q}(\lambda n) \, \frac{n \cdot \gamma}{2} \, q(0) \, | \, h(p,\sigma)\rangle \end{split}$$

- n^{μ} a light-like vector opposite to p-direction.
- ϕ is renormalized at μ ($n \cdot A = 0$ gauge).

$$\phi_{q/h}(\xi,\mu) = \frac{1}{2} \sum_{\sigma} \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x p \cdot n} \left\langle h(p,\sigma) \mid \bar{q}(\lambda n) \frac{n \cdot \gamma}{2} q(0) \mid h(p,\sigma) \right\rangle$$
$$\sim \left\langle h(p,\sigma) \mid b^{\dagger}(\xi p,\lambda) b(\xi p,\lambda) \mid h(p,\sigma) \right\rangle + \mathcal{O}(g_s)$$

- At zeroth order, $\phi_{q/h}(\xi)$ counts the number of quarks at fractional momentum ξ in h(p,s). (spin average in this case)
- $N(p,\sigma)=b(p,\sigma)^{\dagger}b(p,\sigma)$: the "number operator": "takes away" a quark, puts the same one back
- This suggests (a very important aside) . . .

• The generalized distributions:

$$\mathcal{F}_{q/h}(x,\zeta,t,\mu) = \frac{1}{2} \sum_{s} \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x p \cdot n} \left\langle h(\mathbf{p'},\sigma) \mid \bar{q}(\lambda n) \frac{n \cdot \gamma}{2} q(0) \mid h(p,\sigma) \right\rangle$$
$$\sim \left\langle h(p + \zeta p + \vec{\Delta}, \sigma) \mid b^{\dagger}(xp + \Delta, \lambda) b(xp, \lambda) \mid h(p,\sigma) \right\rangle + \mathcal{O}(g_s)$$

- Difference: $p \to p'$ for the "out" quark. $t = \Delta^2$, $\zeta = -n \cdot \Delta$.
- At lowest order: "takes away" a quark at one momentum puts the same kind of quark at a different momentum
- Look for a cross section where this is the factorized distribution: amplitude for DVCS: $q'^2 = 0$, $q^2 = -Q^2$ large, $x = Q^2/p \cdot q$ fixed

$$T^{\mu\nu}(p',q';p,q) = \frac{1}{2} \sum_{\sigma} \int d^4z \, e^{-i(\mathbf{q} - \mathbf{q'}) \cdot z} \, \langle h(p',\sigma) \, | \, T \, (J^{\mu}(z)J^{\nu}(0) \, | \, h(p,\sigma) \rangle$$

- "Compute quark-photon scattering" What does this mean?
- Must use an *IR-regulated* theory
- Extract the IR Safe part then take away the regularization
- Let's see how it works . . .
 - At zeroth order no interactions:
 - $C^{\gamma q_f(0)} = e_f^2 \ \delta(1 x/\xi)$ (Born cross section; parton model)
 - $-\ \phi_{q_f/q_{f'}}^{(0)}(\xi)=\delta_{ff'}\ \delta(1-\xi)$ (at zeroth order, momentum fraction conserved)

$$F_{2}^{\gamma q_{f}(0)}(x,Q^{2}) = \int_{x}^{1} d\xi \, C_{2}^{\gamma q_{f}(0)} \left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{\mu_{F}}{\mu}, \alpha_{s}(\mu)\right)$$

$$\times \phi_{q_{f}/q_{f}}^{(0)}(\xi, \mu_{F}, \alpha_{s}(\mu))$$

$$= e_{f}^{2} \int_{x}^{1} d\xi \, \delta(1 - x/\xi) \, \delta(1 - \xi)$$

$$= e_{f}^{2} \, x \, \delta(1 - x)$$

On to one loop . . .

$F^{\gamma q}$ AT ONE LOOP: FACTORIZATION SCHEMES

• Start with F_2 for a quark:

Have to combine final states with different phase space . . .

"Plus Distributions":

$$\int_0^1 dx \, \frac{f(x)}{(1-x)_+} \equiv \int_0^1 dx \, \frac{f(x) - f(1)}{(1-x)}$$

$$\int_0^1 dx \, f(x) \left(\frac{\ln(1-x)}{1-x}\right)_+ \equiv \int_0^1 dx \, \left(f(x) - f(1)\right) \, \frac{\ln(1-x)}{(1-x)}$$

and so on . . . where

- f(x) will be parton distributions
- \bullet f(x) term: real gluon, with momentum fraction 1-x
- \bullet f(1) term: virtual, with elastic kinematics

A Special Distribution "DGLAP evolution kernel" = "splitting function"

$$P_{qq}^{(1)}(x) = C_F \frac{\alpha_s}{2\pi} \left[\frac{1+x^2}{1-x} \right]_+$$

ullet Will see: P_{qq} a probability per unit $\log\,k_T$

Expansion and Result:

$$F_2^{\gamma q}(x, Q^2) = \int_x^1 d\xi \ C_2^{\gamma q} \left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{\mu_F}{\mu}, \alpha_s(\mu) \right) \times \phi_{q/q}(\xi, \mu_F, \alpha_s(\mu))$$

$$F_2^{\gamma q_f}(x, Q^2) = C_2^{(0)} \phi^{(0)} + \frac{\alpha_s}{2\pi} C^{(1)} \phi^{(0)} + \frac{\alpha_s}{2\pi} C^{(0)} \phi^{(1)} + \dots$$

$$F_{2}^{\gamma q_{f}}(x, Q^{2}) = e_{f}^{2} \left\{ x \, \delta(1 - x) + \frac{\alpha_{s}}{2\pi} C_{F} \left[\frac{1 + x^{2}}{1 - x} \left(\frac{\ln(1 - x)}{x} \right) + \frac{1}{4} (9 - 5x) \right]_{+} + \frac{\alpha_{s}}{2\pi} C_{F} \int_{0}^{Q^{2}} \frac{dk_{T}^{2}}{k_{T}^{2}} \left[\frac{1 + x^{2}}{1 - x} \right]_{+} \right\} + \dots$$

$$F_1^{\gamma q_f}(x, Q^2) = \frac{1}{2x} \left\{ F_2^{\gamma q_f}(x, Q^2) - C_F \frac{\alpha_s}{\pi} 2x \right\}$$

Factorization Scheme

 \overline{MS}

$$\phi_{q/q}^{(1)}(x,\mu^2) = \frac{\alpha_s}{2\pi} P_{qq}(x) \int_0^{\mu^2} \frac{dk_T^2}{k_T^2}$$

With k_T -integral "IR regulated".

Advantage: technical simplicity; not tied to process.

$$C^{(1)}(x)_{\overline{\rm MS}}=(\alpha_s/2\pi)~P_{qq}(x)\ln(Q^2/\mu^2)$$
 + μ -independent

This is the matrix element for the "quark-in-quark distribution":

$$\phi_{q/q}(\xi,\mu) = \frac{1}{2} \sum_{s} \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x p \cdot n} \left\langle q(p,\sigma) \mid \bar{q}(\lambda n) \frac{n \cdot \gamma}{2} q(0) \mid q(p,\sigma) \right\rangle$$

Using the Regulated Theory and Getting Parton Distributions for Real Hadrons

- IR-regulated QCD is not REAL QCD
- ullet BUT it only differs at low momenta
- THUS we can use it for IR Safe functions: $C_2^{\gamma q}$, etc.
- This enables us to get PDFs for real hadrons . . .

- Compute $F_2^{\gamma q}$, $F_2^{\gamma G}$. . .
- Define factorization scheme; find IR Safe C's
- Use factorization in the full theory

$$F_2^{\gamma N} = \sum_{a=q_f, \bar{q}_f, G} C^{\gamma a} \otimes \phi_{a/N}$$

- Measure F_2 ; then use the known C's to derive $\phi_{a/N}$
- Multiple flavors and cross sections complicate technicalities; not logic (Global Fits)

NOW HAVE
$$\phi_{a/N}(\xi,\mu^2)$$

USE IT IN ANY OTHER PROCESS THAT FACTORIZES

EVOLUTION

- $-Q^2$ -dependence
- In general, Q^2/μ^2 dependence still in $C_a\left(x/\xi,Q^2/\mu^2,\alpha_s(\mu)\right)$ $Choose~\mu=Q$

$$F_2^{\gamma A}(x, Q^2) = \sum_a \int_x^1 d\xi \ C_2^{\gamma a} \left(\frac{x}{\xi}, 1, \alpha_s(Q)\right) \ \phi_{a/A}(\xi, Q^2)$$

 $Q \gg \Lambda_{\rm QCD} \rightarrow compute \ C$ in PT.

$$C_2^{\gamma a}\left(\frac{x}{\xi}, 1, \alpha_s(Q)\right) = \sum_n \left(\frac{\alpha_s(Q)}{\pi}\right)^n C_2^{\gamma a(n)}\left(\frac{x}{\xi}\right)$$

But still need PDFs at $\mu = Q$: $\phi_{a/A}(\xi, Q^2)$ for different Q's.

- Remarkable result: **EVOLUTION**

Can use $\phi_{a/A}(x,Q_0^2)$ to determine $\phi_{a/A}(x,Q^2)$ and hence $F_{1,2,3}(x,Q^2)$ for any Q!

So long at $\alpha_s(Q)$ is still small

- Illustrate by a 'nonsinglet' distribution

$$F_a^{\gamma NS} = F_a^{\gamma p} - F_a^{\gamma n}$$

$$F_2^{\gamma \text{NS}}(x, Q^2) = \int_x^1 d\xi \ C_2^{\gamma \text{NS}}\left(\frac{x}{\xi}, \frac{Q}{\mu}, \alpha_s(\mu)\right) \ \phi_{\text{NS}}(\xi, \mu^2)$$

Gluons, antiquarks cancel

At one loop: $C_2^{\rm NS} = C_2^{\gamma N}$

- 'Mellin' Moments and Anomalous Dimensions

$$\bar{f}(N) = \int_0^1 dx \ x^{N-1} \ f(x)$$

Reduces convolution to a product

$$f(x) = \int_{x}^{1} dy \ g\left(\frac{x}{y}\right) \ h(y) \to \bar{f}(N) = \bar{g}(N) \ \bar{h}(N+1)$$

Moments applied to NS structure function:

$$\bar{F}_2^{\gamma \text{NS}}(N, Q^2) = \bar{C}_2^{\gamma \text{NS}}\left(N, \frac{Q}{\mu}, \alpha_s(\mu)\right) \; \bar{\phi}_{\text{NS}}(N, \mu^2)$$

(Note
$$\bar{\phi}_{
m NS}(N,\mu^2) \equiv \int_0^1 d\xi \xi^N f(\xi,\mu^2)$$
 here.)

- $ar{F}_2^{\gamma ext{NS}}(N,Q^2)$ is PHYSICAL

$$\Rightarrow \mu \frac{d}{d\mu} \; \bar{F}_2^{\gamma NS}(N, Q^2) = 0$$

- 'Separation of variables'

$$\mu \frac{d}{d\mu} \ln \bar{\phi}_{NS}(N, \mu^2) = -\gamma_{NS}(N, \alpha_s(\mu))$$
$$\gamma_{NS}(N, \alpha_s(\mu)) = \mu \frac{d}{d\mu} \ln \bar{C}_2^{\gamma_{NS}}(N, \alpha_s(\mu))$$

- Because α_s and N are the only variables held in common!

$$\mu \frac{d}{d\mu} \ln \bar{\phi}_{NS}(N, \mu^2) = -\gamma_{NS}(N, \alpha_s(\mu))$$

$$\gamma_{NS}(N, \alpha_s(\mu)) = \mu \frac{d}{d\mu} \ln \bar{C}_2^{\gamma_{NS}}(N, \alpha_s(\mu))$$

– Only need to know C's $\Rightarrow \gamma_n$ from IR regulated theory!

Q-DEPENDENCE DETERMINED BY PT

EVOLUTION

THIS WAS HOW WE FOUND OUT QCD IS 'RIGHT'

THIS IS HOW QCD PREDICTS PHYSICS AT NEW SCALES

... for hard scattering cross sections, and amplitudes

(Hint:
$$(1-x^2)/(1-x) = 1 + x \dots (1-x^k)/(1-x) = \sum_{i=0}^{k-1} x^k$$
)
$$\gamma_{\rm NS}^{(1)}(N,\alpha_s) = \mu \frac{d}{d\mu} \ln \bar{C}_2^{\gamma {\rm NS}}(N,\alpha_s(Q))$$

$$= \mu \frac{d}{d\mu} \left\{ (\alpha_s/2\pi) \ \bar{P}_{qq}(N) \ln(Q^2/\mu^2) + \mu \ \text{indep.} \right\}$$

$$= -\frac{\alpha_s}{\pi} \int_0^1 dx \ x^{N-1} \ P_{qq}(x)$$

$$= -\frac{\alpha_s}{\pi} C_F \int_0^1 dx \ \left[(x^{N-1} - 1) \ \frac{1+x^2}{1-x} \right]$$

$$= -\frac{\alpha_s}{\pi} C_F \left[4 \sum_{m=2}^N \frac{1}{m} - 2 \frac{2}{N(N+1)} + 1 \right]$$

$$\equiv -\frac{\alpha_s}{N_{\rm NS}} \gamma_{\rm NS}^{(1)}$$

SOLUTION: SCALE BREAKING

$$\mu \frac{d}{d\mu} \; \bar{\phi}_{NS}(N, \mu^2) = -\gamma_{NS}(N, \alpha_s(\mu)) \; \bar{\phi}_{NS}(N, \mu^2)$$

$$\bar{\phi}_{\rm NS}(N,\mu^2) = \bar{\phi}_{\rm NS}(N,\mu_0^2) \times \exp \left[-\frac{1}{2} \int_{\mu_0^2}^{\mu^2} \frac{d\mu'^2}{\mu'^2} \gamma_{\rm NS}(N,\alpha_s(\mu)) \right]$$

 $\downarrow \downarrow$

$$\bar{\phi}_{\rm NS}(N,Q^2) = \bar{\phi}_{\rm NS}(N,Q_0^2) \left(\frac{\ln(Q^2/\Lambda_{\rm QCD}^2)}{\ln(Q_0^2/\Lambda_{\rm QCD}^2)} \right)^{-2\gamma_N^{(1)}/b_0}$$

Hint:

$$\alpha_s(Q) = \frac{4\pi}{b_0 \ln(Q^2/\Lambda_{\rm QCD}^2)}$$

So also:

$$\bar{\phi}_{\rm NS}(N,Q^2) = \bar{\phi}_{\rm NS}(N,Q_0^2) \left(\frac{\alpha_s(Q_0^2)}{\alpha_s(Q^2)}\right)^{-2\gamma_N^{(1)}/b_0}$$

$$\bar{\phi}_{NS}(N,Q^2) = \bar{\phi}_{NS}(N,Q_0^2) \left(\frac{\alpha_s(Q_0^2)}{\alpha_s(Q^2)}\right)^{-2\gamma_N^{(1)}/b_0}$$

- 'Mild' scale breaking
- For $\alpha_s \to \alpha_0 \neq 0$, get a power Q-dependence:

$$(Q^2)^{\frac{\alpha_0}{2\pi} \gamma^{(1)}}$$

- QCD's consistency with the Parton Model (73-74)

$$\mu \frac{d}{d\mu} \; \bar{\phi}_{NS}(N, \mu^2) = -\gamma_N(\alpha_s(\mu)) \; \bar{\phi}_{NS}(N, \mu^2)$$

$$\Downarrow$$

$$\mu \frac{d}{d\mu} \phi_{\rm NS}(x, \mu^2) = \int_x^1 \frac{d\xi}{\xi} P_{\rm NS}\left(\frac{x}{\xi}, \alpha_s(\mu)\right) \bar{\phi}_{\rm NS}(\xi, \mu^2)$$

Splitting function ← **Moments**

$$\int_0^1 dx \ x^{N-1} \ P_{qq}(x, \alpha_s) = \gamma_{qq}(N, \alpha_s)$$

BEYOND NONSINGLET COUPLED EVOLUTION

$$\mu \frac{d}{d\mu} \, \phi_{a/A}(x,\mu^2) = \sum_{b=q,\bar{q},G} \int_x^1 \frac{d\xi}{\xi} \, P_{ab} \left(\frac{x}{\xi}, \alpha_s(\mu) \right) \, \bar{\phi}_{b/A}(\xi,\mu^2)$$

Physical Contxt of Evolution

- Parton Model: $\phi_{a/A}(x)$ density of parton a with momentum fraction x, assumed independent of Q
- PQCD: $\phi_{a/A}(x,\mu)$: same density, but with transverse momentum $\leq \mu$

- If there were a maximum transverse momentum Q_0 , each $\phi_{a/h}(x,Q_0)$ would freeze for $\mu \geq Q_0$
- Not so in renormalized PT
- Scale breaking measures the change in the density as maximum transverse momentum increases
- Cross sections we compute still depend on our choice of μ through uncomputed "higher orders" in C and evolution

- Evolution in DIS (with CTEQ6 fits)

Resummation: the Classic Case: Q_T

Every final state from a hard scattering carries the imprint of QCD dynamics from at all distance scales

Resummation extends evolution reasoning to control part of this transition.

• Look at transverse momentum distribution at order α_s

$$q(p_1) + \bar{q}(p_2) \rightarrow \gamma^*(Q) + g(k),$$

• Treat this 2 \to 2 process at lowest order (α_s) "LO" in factorized cross section, so that ${\bf k}=-{\bf Q}_T$

ullet Factorized cross section at fixed \mathbf{Q}_T :

$$\frac{d\sigma_{NN\to\mu^{+}\mu^{-}+X}(Q,p_{1},p_{2})}{dQ^{2}d^{2}\mathbf{Q}_{T}} = \int_{\xi_{1},\xi_{2}} \sum_{a=q\bar{q}} \frac{d\hat{\sigma}_{a\bar{a}\to\mu^{+}\mu^{-}(Q)+X}(Q,\mu,\xi_{1}p_{1},\xi_{2}p_{2},\mathbf{Q}_{T})}{dQ^{2}d^{2}\mathbf{Q}_{T}} \times f_{a/N}(\xi_{1},\mu) f_{\bar{a}/N}(\xi_{2},\mu)$$

• μ is the factorization scale that separates IR (f) from UV $(d\hat{\sigma})$ in quantum corrections.

• The diagrams at order α_s . Finite for $\mathbf{Q}_T \neq 0$. . .

Gluon emission contributes at $Q_T \neq 0$

Virtual corrections contribute only at $Q_T=0$

$$\frac{d\hat{\sigma}_{q\bar{q}\to\gamma^*g}^{(1)}}{dQ^2 d^2 \mathbf{Q}_T} = \sigma_0 \frac{\alpha_s C_F}{\pi^2} \left(1 - \frac{4\mathbf{Q}_T^2}{(1-z)^2 \xi_1 \xi_2 S} \right)^{-1/2}$$

$$\times \left[\frac{1}{\mathbf{Q}_T^2} \frac{1+z^2}{1-z} - \frac{2z}{(1-z)Q^2} \right]$$

as long as $Q_T \neq 0$, $z = Q^2/\xi_1 \xi_2 S \neq 1$.

 Q_T integral $o rac{\ln(1-z)}{1-z}$; z integral $o rac{\ln \mathbf{Q}_T^2}{\mathbf{Q}_T^2}$.

The leading singularity in \mathbf{Q}_T

• z integral: If Q^2/S not too big, PDFs nearly constant:

$$\frac{1}{\mathbf{Q}_T^2} \int_{1-Q^2/S}^{1-\mathbf{Q}_T^2/Q^2} \frac{dz}{1-z} = \frac{1}{\mathbf{Q}_T^2} \ln \left[\frac{Q^2}{\mathbf{Q}_T^2} \right]$$

 \Rightarrow Prediction for Q_T dependence:

$$\frac{d\sigma_{NN\to\mu^+\mu^-+X}(Q,\mathbf{Q}_T)}{dQ^2d^2\mathbf{Q}_T} = \frac{\alpha_s C_F}{\pi} \frac{1}{\mathbf{Q}_T^2} \ln\left[\frac{Q^2}{\mathbf{Q}_T^2}\right] \\
\times \sum_{a=a\bar{a}} \int_{\xi_1\xi_2} \frac{d\hat{\sigma}_{a\bar{a}\to\mu^+\mu^-(Q)+X}(Q,\mu)}{dQ^2} f_{a/N}(\xi_1,\mu) f_{\bar{a}/N}(\xi_2,\mu)$$

ullet Compare to: Z p_T (from Kulesza, G.S., Vogelsang (2002))

- $\ln Q_T/Q_T$ works pretty well for large Q_T
- But at smaller Q_T reach a maximum, then a decrease near "exclusive" limit (parton model kinematics)
- Most events are at "low" $Q_T \ll Q = m_Z$.

Getting to $Q_T \ll Q$: Transverse momentum resummation

(Logs of Q_T)/ Q_T to all orders

How? Variant factorization and separation of variables

q and \bar{q} "arrive" at point of annihilation with transverse momentum of radiated gluons in initial state.

q and \bar{q} radiate independently (fields don't overlap!).

Final-state QCD radiation too late to affect cross section

$$\frac{d\sigma_{NN\to\mu^+\mu^-+X}(Q,\mathbf{Q}_T)}{dQ^2d^2\mathbf{Q}_T}$$

Summarized by: Q_T -factorization:

$$\frac{d\sigma_{NN\to QX}}{dQd^{2}Q_{T}} = \int d\xi_{1}d\xi_{2} \ d^{2}\mathbf{k}_{1T}d^{2}\mathbf{k}_{2T}d^{2}\mathbf{k}_{sT} \,\delta\left(Q_{T} - k_{1T} - k_{2T} - k_{sT}\right)
\times H(\xi_{1}p_{1}, \xi_{2}p_{2}, Q, n)_{a\bar{a}\to Q+X}
\times \mathcal{P}_{a/N}(\xi_{1}, p_{1} \cdot n, k_{1T}) \,\mathcal{P}_{\bar{a}/N}(\xi_{2}, p_{2} \cdot n, k_{2T}) \,U_{a\bar{a}}(k_{sT}, n)$$

The $\mathcal{P}'s$: new Transverse momentum-dependent PDFs

Also need U: "soft function" for wide-angle radiation

Symbolically:

$$\frac{d\sigma_{NN\to QX}}{dQd^2Q_T} = H \times \mathcal{P}_{a/N}(\xi_1, p_1 \cdot n, k_{1T}) \mathcal{P}_{\bar{a}/N}(\xi_2, p_2 \cdot n, k_{2T})$$
$$\otimes_{\xi_i, k_{iT}} U_{a\bar{a}}(k_{sT}, n)$$

We will solve for the k_T dependence of the \mathcal{P} 's.

New factorization variables: n^{μ} apportions gluons k:

$$p_i \cdot k < n \cdot k \implies k \in \mathcal{P}_i$$
$$p_a \cdot k, p_{\bar{a}} \cdot k > n \cdot k \implies k \in U$$

Convolution in $k_{i,T}s \Rightarrow$ Fourier $e^{i\vec{Q}_T \cdot \vec{b}}$

The factorized cross section in "impact parameter space":

$$\frac{d\sigma_{NN\to QX}(Q,b)}{dQ} = \int d\xi_1 d\xi_2$$

$$\times H(\xi_1 p_1, \xi_2 p_2, Q, n)_{a\bar{a}\to Q+X}$$

$$\times \mathcal{P}_{a/N}(\xi_1, p_1 \cdot n, b) \mathcal{P}_{\bar{a}/N}(\xi_2, p_2 \cdot n, b) U_{a\bar{a}}(b, n)$$

Now we can resum by separating variables!

the LHS independent of μ_{ren} , $n \Rightarrow$ two equations

$$\mu_{\rm ren} \frac{d\sigma}{d\mu_{\rm ren}} = 0 \quad n^{\alpha} \frac{d\sigma}{dn^{\alpha}} = 0$$

Method of Collins and Soper, and Sen (1981)

Change in jet must cancel change in (UV) H and (IR) U:

$$p \cdot n \frac{\partial}{\partial p \cdot n} \ln \mathcal{P}(p \cdot n/\mu, b\mu) = G(p \cdot n/\mu) + K(b\mu)$$

G matches H, K matches U. Renormalization indep. of n^{μ} :

$$\mu \frac{\partial}{\partial \mu} \left[G(p \cdot n/\mu) + K(b\mu) \right] = 0$$

$$\mu \frac{\partial}{\partial \mu} G(p \cdot n/\mu) = A(\alpha_s(\mu)) = -\mu \frac{\partial}{\partial \mu} K(b\mu)$$

Solve this one first. μ in α_s varies (& α_s need not be small).

$$G(p \cdot n/\mu) + K(b\mu) = G(p \cdot n/\mu) + K(\mu/p \cdot n)$$
$$- \int_{1/b}^{p \cdot n} \frac{d\mu'}{\mu'} A_a(\alpha_s(\mu'))$$

The consistency equation for the jet becomes

$$p \cdot n \frac{\partial}{\partial p \cdot n} \ln \mathcal{P}(p \cdot n/\mu, b\mu) = G(p \cdot n/\mu) + K(\mu/p \cdot n)$$
$$- \int_{1/b}^{p \cdot n} \frac{d\mu'}{\mu'} A(\alpha_s(\mu'))$$

Integrate $p \cdot n$ and get double logs in $b \to \alpha_s^n \frac{\ln^{2n-1}(Q/Q_T)}{Q_T}$.

Transformed solution back to Q_T : all the (Logs of Q_T)/ Q_T , Which fits the data; (viz. RESBOS; Yuan, Nadolsky et al.)

$$\frac{d\sigma_{NN\text{res}}}{dQ^{2}d^{2}\vec{Q}_{T}} = \sum_{a} H_{a\bar{a}}(\alpha_{s}(Q^{2})) \int \frac{d^{2}b}{(2\pi)^{2}} e^{i\vec{Q}_{T}\cdot\vec{b}} \exp\left[E_{a\bar{a}}^{\text{PT}}(b,Q,\mu)\right]
\times \sum_{a=q\bar{q}} \int_{\xi_{1}\xi_{2}} \frac{d\hat{\sigma}_{a\bar{a}\to\mu^{+}\mu^{-}(Q)+X}(Q,\mu)}{dQ^{2}} f_{a/N}(\xi_{1},1/b) f_{\bar{a}/N}(\xi_{2},1/b)$$

"Sudakov" exponent links large and low virtuality:

$$E_{a\bar{a}}^{PT} = -\int_{1/b^2}^{Q^2} \frac{dk_T^2}{k_T^2} \left[2A_q(\alpha_s(k_T)) \ln\left(\frac{Q^2}{k_T^2}\right) + 2B_q(\alpha_s(k_T)) \right]$$

With $B = 2(K + G)_{\mu = p \cdot n}$, and lower limit: 1/b (NLL)

SUMMARY

- Specific problems for perturbation theory in QCD
 - 1. Confinement

$$\int e^{-iq\cdot x} \langle 0 | T[\phi_a(x) \dots] | 0 \rangle$$

has no $q^2 = m^2$ pole for ϕ_a that transforms nontrivially under color (confinement)

2. The pole at $p^2=m_\pi^2$

$$\int e^{-iq\cdot x} \langle 0 | T[\pi(x) \dots] | 0 \rangle$$

is not accessible to perturbation theory

Response: use infrared safety & asymptotic freedom:

$$Q^{2} \hat{\sigma}_{SD}(Q^{2}, \mu^{2}, \alpha_{s}(\mu)) = \sum_{n} c_{n}(Q^{2}/\mu^{2}) \alpha_{s}^{n}(\mu) + \mathcal{O}(1/Q^{p})$$
$$= \sum_{n} c_{n}(1) \alpha_{s}^{n}(Q) + \mathcal{O}(1/Q^{p})$$

- What can we really calculate? PT for color singlet operators
 - $-\int e^{-iq\cdot x}\langle 0|T[J(x)J(0)\dots]|0\rangle$ for color singlet currents

 e^+e^- total . . . no QCD in initial state

Jet cross sections are from matrix elements also:

$$\lim_{R\to\infty} \int dx_0 \int d\hat{n} \, S(\hat{n}) \, \mathrm{e}^{-iq\cdot y} \langle 0| \, J(0)T[\hat{n}_i T_{0i}(x_0, R\hat{n})J(y)] \, |0\rangle$$

Where the operator T_{0i} measures momentum flow

"Weight" $S(\hat{n})$ introduces no new dimensional scale

Short-distance dominated if all $d^kS/d\hat{n}^k$ bounded

Individual final states have IR divergences, but these cancel in sum over collinear splitting/merging and soft parton emission because they respect energy flow

But what of the initial state? (viz. parton model)

Factorization

$$Q^2 \sigma_{\text{phys}}(Q, m) = \omega_{\text{SD}}(Q/\mu, \alpha_s(\mu)) \otimes \phi_{\text{LD}}(\mu, m) + \mathcal{O}(1/Q^p)$$

- $-\mu$ = factorization scale; m= IR scale
- New physics in $\omega_{\rm SD}$; $\phi_{\rm LD}=f$ and/or D "universal"
- ep DIS inclusive, $pp \to jets$, $Q\bar{Q}$, $\pi(p_T)$, DVCS . . .
- Exclusive limits: $e^+e^- \rightarrow JJ$ as $m_J \rightarrow 0$

Whenever there is factorization, there is evolution

$$0 = \mu \frac{d}{d\mu} \ln \sigma_{\text{phys}}(Q, m)$$
$$\mu \frac{d \ln(\phi \text{ or } D)}{d\mu} = -P(\alpha_s(\mu)) = -\mu \frac{d \ln \omega}{d\mu}$$

PDF ϕ or Fragmentation D

• Wherever there is evolution there is resummation

$$\ln \sigma_{\text{phys}}(Q, m) = \exp \left\{ \int_{q}^{Q} \frac{d\mu'}{\mu'} P\left(\alpha_s(\mu')\right) \right\}$$

- Appendix: Basis of Factorization proofs:
 - (1) ω_{SD} incoherent with long-distance dynamics
 - (2) Mutual incoherence when $v_{\rm rel}=c$: Jet-jet factorization.
 - (3) Wide-angle soft radiation sees only total color flow: jet-soft factorization.
 - (4) Dimensionless coupling and renormalizability
 ⇔ no worse that logarithmic divergence in the IR:
 suppression even by a fractional power ⇒ finiteness

- Hadron-Hadron Factorization Heuristic, classical argument:

<u>field</u>	$\underline{x \text{ frame}}$	$\underline{x' \text{ frame}}$
scalar	$rac{q}{ ec{x} }$	$\frac{q}{(x_T^2 + \gamma^2 \Delta^2)^{1/2}}$
gauge	$A^0(x) = \frac{q}{ \vec{x} }$	$A'^{0}(x') = \frac{q\gamma}{(x_T^2 + \gamma^2 \Delta^2)^{1/2}}$
field strength	$E_3(x) = \frac{-q}{ \vec{x} ^2}$	$E_3'(x') = \frac{-q\gamma\Delta}{(x_T^2 + \gamma^2\Delta^2)^{3/2}}$

- Classical: Lorentz contracted fields of incident particles don't overlap until the moment of the scattering, creation of heavy particle, etc.!
- Initial-state interactions decouple from the hard process
- Summarized by multiplicative factors:
 parton distributions
- Evolution of partons to jets/hadrons too late to know details of the hard scattering
- Summarized by multiplicative factors: fragmentation functions
- "Left-over" cross section for hard scattering is IR safe